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Abstract

In this paper, asymptotic waveform evaluation (AWE) has been successfully used for fast transient characterization of Fourier and
non-Fourier heat conduction. The Fourier and non-Fourier equations are reduced to a system of linear differential equations, respec-
tively, using finite element method and then solved with AWE. Besides providing equivalent accuracy in its solution, it is also shown
that AWE is at least three orders faster in term of computational time as compared to conventional iterative solvers. Its accuracy is also
independent of the time step used and it has the capability of providing local transient solution. However, the moment matching process
in AWE is inherently ill-conditioned and thus may yield unstable response even for stable system. This numerical instability is addressed
and two stability schemes are also successfully implemented to yield stable and accurate solutions from AWE. The limitation of AWE is
also discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Asymptotic waveform evaluation (AWE), which has
been used for fast transient circuit simulation, is based on
the concept of approximating the original system with a
reduced order system. The inspiration of AWE came from
Rubinstein et al. [1], where RC-tree networks were esti-
mated using efficient Elmore delay approach. However,
these estimates were not always accurate. A second break-
through came from the work of McCormick [2], in which
he has used the interconnect circuit moments to form a
lower order circuit models to predict transient responses
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accurately. The efforts of these authors lead to the formal-
ization and generalization of AWE algorithms [3,4].

For more than a decade, extensive works on AWE has
been carried out. AWE has been successfully applied for
fast transient circuit simulation [5–7]. AWE also has a lot
of successes in electromagnetic simulations. However, there
are only two papers available on the application of AWE in
transient thermal simulation. Da et al. [8] have published
the first paper on thermal analysis of PCB using AWE
scheme, but the details of incorporating the initial condi-
tions were not addressed. Then, Ooi et al. [9] has success-
fully extended the AWE algorithm to incorporate the
initial conditions. They created a generalized formulation
using the concept of zero state response and zero input
response, which is used in control system. However, Ooi
et al. [9] did not address the inherent numerical instability
of AWE, which may yield incorrect solutions. Both papers
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Nomenclature

k residue
M moment
p pole
t time (s)
T temperature (�C)
ZT dimensionless phase lag for temperature gradi-

ent

Zq dimensionless phase lag for heat flux
b dimensionless time
d dimensionless distance x

e dimensionless distance y

h dimensionless temperature
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also only focused on solving Fourier heat conduction equa-
tion with AWE.

On the other hand, finite element method (FEM) has
been extensively used to solve thermal problems because
it is capable to account for complicated three-dimensional
geometry. Besides that, the governing equations for Fou-
rier and non-Fourier heat conduction are also parabolic
and hyperbolic in nature, respectively, and they are difficult
to be solved analytically. Using FEM, the transient heat
conduction equation (partial differential equation) is
reduced to a set of linear differential equations through
the process of discretization. This set of differential equa-
tions can then be solved in time domain to obtain its tran-
sient solution.

Usually, this set of equations is solved using conven-
tional iterative solvers such as Crank–Nicolson, Runge–
Kutta and the famous Newmark algorithm. These conven-
tional numerical solvers require the whole set of equations
to be solved at each increment of time step, even though
only the solution at a particular node is of interest. Solving
this large set of equations is very time consuming, espe-
cially when the time step required is also very small in order
to yield accurate solutions.

In contrast, AWE is actually approximating the original
system with reduced order system and thus, it is a few
orders faster than conventional iterative solvers in term
of computational time. It is also independent of time step
because it produces the transient solutions in a form of
equation, rather than numerical solutions at every incre-
ment of time step. AWE is also capable of producing local
solution because it can obtain the solution for each node
independently and thus further reducing the amount of
computational time. However, the drawback of AWE is
that the moment matching process in AWE is inherently
ill-conditioned and thus may produce unstable response
even for stable system [10]. Higher order approximation
will lead to a more accurate solution but not always guar-
antee a stable solution.

In this paper, FEM is coupled with AWE to efficiently
solve the transient Fourier and non-Fourier heat conduc-
tion equations. FEM is used to reduce the Fourier (para-
bolic) and non-Fourier (hyperbolic) equations to a set of
first and second order linear differential equations, respec-
tively. AWE is then used to obtain the transient solutions
instead of using conventional iterative solvers. The inher-
ent instability of AWE is also addressed and two stability
schemes are also introduced to yield accurate and yet stable
solution even using higher order approximation.
2. Mathematical model for Fourier and non-Fourier heat

conduction

Classical Fourier’s law is based on diffusion model with
assumption of infinite thermal wave propagation speed,
which leads to simultaneous development of heat flux
and temperature gradient. Classical Fourier’s law also
assumes that instantaneous local thermal equilibrium
occurs between electrons and phonons. In other words,
classical Fourier’s law dictates that the thermal effect is felt
instantaneously throughout the system if the surface of a
material is heated. The governing equation for non-dimen-
sionalized two-dimensional Fourier heat conduction is a
parabolic equation as shown by Eq. (1).

o2h

od2
þ o2h

oe2
¼ oh

ob
ð1Þ

where h is the dimensionless temperature and b is the
dimensionless time. The dimensionless distance x and y

are represented by d and e, respectively.
After discretizating Eq. (1) with Galerkin’s weighted

residual method, a set of first order linear differential equa-
tions is obtained as given by Eq. (2). The detailed formula-
tions of Eq. (2) can be obtained from Logan [11].

C _hþ Kh ¼ f ð2Þ

where C is known as the capacitive matrix, while K is the
conductivity matrix. f represents the load vector, which
can be time-dependent or time-independent.

Classical Fourier law is sufficient for most heat conduc-
tion phenomena, but it is inadequate to describe rapid
heating response, such as VLSI interconnection heating.
Thus, many non-Fourier heat conduction equations are
proposed by many researchers to account for the finite
thermal wave propagation speed and/or finite relaxation
time to establish local thermal equilibrium between elec-
trons and phonons. The non-Fourier model discussed in
this paper is a two-phase lag model proposed by Tzou
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Fig. 1. Flow of AWE algorithm.
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[12]. Cheah et al. [13] has generalized it into a non-dimen-
sionalized two-dimensional hyperbolic equation given by
Eq. (3).

o
2h

od2
þ o

2h
oe2
þ ZT

o
3h

obod2
þ ZT

o
3h

oboe2
¼ oh

ob
þ Zq

o
2h

ob2
ð3Þ

where

h ¼ T � T o

T w � T o
; b ¼ t

l2=a
; d ¼ x

l
; e ¼ y

h
;

ZT ¼
sT

l2=a
and Zq ¼

sq

l2=a

sT is the phase lag of spatial temperature gradient with re-
spect to the local temperature (to account for finite relaxa-
tion time for electron–phonon equilibrium), while sq is the
phase lag of heat flux with respect to the local temperature
(to account for finite thermal wave speed). The dimension-
less variables for these phase lags are represented by ZT

and Zq, respectively. The length and width are given by l

and h, respectively, whereas a is the thermal diffusivity.
Cheah et al. [13] has also discretized Eq. (3) using Galer-

kin’s weighted residual method to form a set of second
order linear differential equations, as shown by Eq. (4).

A€hþ C _hþ Kh ¼ f ð4Þ
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3. The AWE algorithm

The concept of AWE is to approximate the original
response of a system with a reduced order system. Fig. 1
shows the flow of AWE algorithm, which can be catego-
rized into three major steps. The response of a system
can be represented by a polynomial equation in s-domain,
where the coefficients of this polynomial are known as the
moments [2,3]. In moment generation, the moments are
determined for zero state response (ZSR) and zero input
response (ZSR). The concept of ZSR and ZIR is used by
Ooi et al. [9] to account for the boundary and initial condi-
tions, respectively. In ZSR, the initial conditions of the sys-
tem are assumed to be zero, while the forcing functions are
assumed to be zero in ZIR. In moment matching, the order
of the system response is reduced using Padé approxima-
tion, and then further simplified to a set of partial fractions,
where each partial fraction contains a pole and also a zero.
Finally, each partial fraction is inversed Laplace back to
time domain and summed up to provide the transient
solution.

3.1. First order differential equation

As discussed in Section 2, parabolic heat conduction
equation can be discretized into a set of first order linear
differential equations using Galerkin’s weighted residual
method.

C _T þ KT ¼ F ðtÞ ð5Þ
where C 2 RN�N, K 2 RN�N and F (t) 2 RN.

Taking Laplace transform of Eq. (5),

CðsT ðsÞ � T ð0ÞÞ þ KT ðsÞ ¼ f ð6Þ
The system solution, T(s) can be approximated by using
polynomial equation in s-domain, as given by Eq. (7).

T ðsÞ ¼
X1
n¼0

Mnsn ð7Þ

The moments, Mn, are the coefficients of Taylor series
expansion about s = 0 (Maclaurin series) [2–4]. Moments
are generated, respectively, for ZSR and ZIR by substitut-
ing Eq. (7) into Eq. (6) as following.

3.1.1. Zero state response (ZSR)

In ZSR, the initial condition is assumed to be zero,
T(0) = 0.

ðCsþ KÞðM0 þM1sþM2s2 þ � � � þMnsnÞ ¼ f ð8Þ
By equating the same powers of s, the moments are gener-
ated from Eq. (9).

KM0 ¼ f

KMn ¼ �CMn�1 for n ¼ 1; 2; 3; . . . ; ð2q� 1Þ
ð9Þ

where q = order of Padé approximation.
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3.1.2. Zero input response (ZIR)

In ZIR, the forcing function is assumed to be zero, f = 0.

ðCsþ KÞðM0 þM1sþM2s2 þ � � � � þMnsnÞ ¼ CT ð0Þ ð10Þ

Again by equating the same powers of s, the moments are
generated from Eq. (11).

KM 0 ¼ CT ð0Þ

KMn ¼ �CMn�1 for n ¼ 1; 2; 3; . . . ; ð2q� 1Þ
ð11Þ
3.2. Second order differential equation

For hyperbolic heat conduction equation as shown by
Eq. (3), it can be reduced to a set of second order differen-
tial equations using Galerkin’s weighted residual method
[13,14].

A€T þ C _T þ KT ¼ F ðtÞ
where A 2 RN�N, C 2 RN�N, K 2 RN�N and F(t) 2 RN.

Following the formulation above, the moments for ZSR
and ZIR can be obtained from Eqs. (12) and (13),
respectively.

3.2.1. Zero state response (ZSR)

KM 0 ¼ f

KM 1 ¼�CM0

KMn ¼�ðAMn�2 þCMn�1Þ for n¼ 2;3;4; . . . . . . ; ð2q� 1Þ
ð12Þ
3.2.2. Zero input response (ZIR)

KM 0 ¼ CT ð0Þ þA _T ð0Þ

KM 1 ¼ AT ð0Þ �CM0

KMn ¼�ðAMn�2 þCMn�1Þ for n¼ 2;3;4; . . . . . . ; ð2q� 1Þ
ð13Þ
3.3. Moment matching

In moment matching, only the moments for an arbitrary
node of interest, i are used for computing its local transient
response. This further reduces the computational time, in
contrast to conventional iterative solver which requires
computing the solutions of all the nodes at all time. The
nodal moments of interest, [m], are extracted from global
moment matrix, [M] as shown by Eq. (14).

½mn�i ¼ ½Mn�i for n ¼ 0; 1; 2; . . . ; ð2q� 1Þ ð14Þ

The transient response at an arbitrary node of interest, i
can be approximated by a lower order polynomial fraction
using Padé approximation as shown in Eq. (15) and can be
further simplified to partial fractions as given by Eq. (16).
T iðsÞ ¼ m0 þ m1sþ m2s2 þ � � � þ mnsn

¼ b0 þ b1sþ � � � þ bq�1sq�1

1þ a1sþ � � � þ aqsq
ð15Þ

b0 þ b1sþ � � � þ bq�1sq�1

1þ a1sþ � � � þ aqsq
¼ k1

s� p1

þ k2

s� p2

þ � � � þ kq

s� pq

ð16Þ
The poles and residues of the respective partial fractions

can be obtained by solving Eqs. (17)–(19) [3,9].
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ð19Þ
3.4. Transient response

The transient response at an arbitrary node, i is given by
the sum of ZSR and ZIR in time domain

T iðtÞ ¼ ZSRðtÞ þ ZIRðtÞ ð20Þ
where

ZSRðtÞ ¼
Xq

r¼1

kr

pr

ðeprt � 1Þ ð21Þ

ZIRðtÞ ¼
Xq

r¼1

krðeprt � 1Þ ð22Þ
4. Unstable solutions and stability schemes

4.1. Inherent instability of AWE in Fourier heat conduction

The moment matching process in AWE is inherently ill-
conditioned because Padé approximation is well-known for
yielding unstable poles [10]. In the scope of finite element
analysis, AWE can produce correct solutions for most of
the nodes, but may yield incorrect solutions for some arbi-
trary nodes. A one-dimensional transient Fourier heat con-
duction example from Logan [11] is taken as case study.
Using finite element method (FEM), it is discretized into
19 line elements (20 nodes) as shown in Fig. 2 and sub-
jected to higher step temperature at the base as boundary
condition. Solutions from AWE and also Crank–Nicolson
(conventional iterative solver) agree well for all the nodes,



Fig. 3. Comparison between Crank–Nicolson and AWE (before and after
applying stability scheme) solutions at node 14.

1                    6  7                            14 15                     20 

Higher
temperature

∞T

Fig. 2. Example from Logan [11] and its finite element representation.
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except for nodes 6, 7, 14 and 15. This is because Padé
approximation is known for producing unstable response
even for stable system [15,16].

To further elaborate the weakness of Padé approxima-
tion, consider a stable system, H(s), with two negative
value poles and it is to be approximated by a one pole sys-
tem, G(s) using Padé approximation, as follows:

HðsÞ ¼ k1

s� p1

þ k2

s� p2

and GðsÞ ¼
�k

s� �p
ð23Þ

With some mathematical manipulation, it can be shown
that �p are related to the original poles and residues by
Eq. (24) [17]. �p has to be a negative value left-half plane
pole in order to have a stable reduced order system, G(s).
However, as per Eq. (24), �p can still be rendered to become
a positive value right-half plane pole depending on the val-
ues of the residues (k1 and k2 ), even though both p1 and p2

are negative value left-half plane poles. The process of
yielding undesirable positive poles is random, but it can
be overcome by using the stability schemes as will be dis-
cussed in Sections 4.2 and 4.4 below.

�p ¼
k1

p1
þ k2

p2

k1

p2
1

þ k2

p2
2

ð24Þ
4.2. Stability schemes for Fourier heat conduction

AWE is based on approximating an original system with
a reduced order system. So, higher order approximation is
vital in ensuring that the exact response is successfully cap-
tured by the reduced order system. Besides yielding higher
accuracy at the cost of slightly more computational time,
higher order approximation is also prone to numerical
instability. In most cases, stable and accurate solutions
can be obtained by using lower order approximation. It
was found that using 4th order Padé approximation is suf-
ficient to provide accurate solutions for most Fourier heat
conduction problems, and yet minimizing the number of
unstable nodal solutions. However, this scheme may not
always guarantee that the solutions are both stable and
accurate for all the nodes, as in this case.

Fig. 3 shows that the AWE solution at node 14 starts to
diverge from the Crank–Nicolson solution after 2.5 s. The
divergence is due to unstable positive real poles. It is well-
known in linear feedback control system that a system
becomes unstable if any of the poles fall on the right-hand
side of s-plane. Mathematically, poles with real positive
value will cause magnitude of ZSR or ZIR to become very
large over time, and thus causing the solution to differ
greatly from the correct response.

As given by Eqs. (21) and (22), ZSR and ZIR consist of
the term eprt. If any of the pole, p, has only real positive
value, then the system response will be unable to converge
to a steady-state solution. Instead, it will keep on increas-
ing with time and consequently deviates from the correct
transient response. Thus, it is reasonable to just simply
neglect these unstable real positive poles [18]. This stability
scheme proves to be valid as shown in Fig. 3, where the
AWE solution agrees well with Crank–Nicolson solution
even after 2.5 s.

4.3. Inherent instability of AWE in non-Fourier heat

conduction

AWE is extended to model the transient non-Fourier
heat conduction of two-dimensional slab subjected to
instantaneous temperature rise on one edge [13], as shown
in Fig. 4. The dimensionless parameters used are d =
e = 1(size) and Zq = 0.05. ZT is taken at three different val-
ues, which are 0.5 (over-diffusion), 0.05 (diffusion) and
0.0001(wave-like). Without implementing any stability
scheme, some arbitrary nodes are expected to have positive
real poles and the solutions at these nodes are going to be
unstable and incorrect. As explained above, the generation
of unstable positive real poles is due to the inherently ill-
conditioned moment matching process in AWE.

In this case, higher order approximation is also more
prone to yielding unstable response, whereas lower order
approximation will reduce the number of nodes with unsta-
ble response. Similar to Fourier heat conduction problems,
it was found that 4th order Padé approximation is best at
yielding sufficiently accurate solutions with minimum num-
ber of nodes with unstable response for most non-Fourier
heat conduction problems.



Fig. 6. Dimensionless temperature distribution along the top edge of slab
at ZT = 0.05.

Fig. 7. Dimensionless temperature distribution along the top edge of slab
at ZT = 0.0001.

Fig. 4. Two-dimensional slab subjected to instantaneous temperature rise
on left edge.
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4.4. Stability schemes for non-Fourier heat conduction

The response of Fourier heat conduction has been suc-
cessfully stabilized by neglecting the unstable real positive
poles, as discussed in Section 4.2. Thus, this stability
scheme is also implemented for two-dimensional non-Fou-
rier heat conduction, in an attempt to stabilize all the tem-
perature responses. The stabilized temperature responses
for nodes along the top edge of the slab (from node 2 to
node 51 as shown by Fig. 4) are plotted on Figs. 5–7 for
three different values of ZT, respectively. Figs. 5 and 6 do
not show any unstable response along the slab, which indi-
cates that this stability scheme has worked well for cases
with ZT = 0.5 and ZT = 0.05.

However, AWE does not produce reasonable solutions
for the case with ZT = 0.0001 using this stability scheme.
Fig. 5. Dimensionless temperature distribution along the top edge of slab
at ZT = 0.5.
There is no smooth and continuous trend for the nodal
responses along the top edge of slab, and the solutions at
some nodes are also fluctuating incorrectly as shown in
Fig. 7. The applied stability scheme does manage to sup-
press all unstable poles because there will be responses with
very large magnitude if unstable poles exist. Yet, AWE
solutions are still incorrect at some nodes because AWE
fails to actually approximate the high frequency responses
for nodes adjacent to the instantaneous temperature rise
boundary condition, and thus causing the approximations
for other nodes to deviate from the actual responses as
well. In other words, AWE is incapable to fully represent
the steep responses at some nodes since it is making use
of only exponential terms (as shown by Eqs. (21) and
(22)) to make approximation of the original response.
Thus, this failure also renders the solutions at other nodes
to be incorrect as well.

In addition, partial Padé approximation [15,16] is also
introduced to stabilize the AWE solutions for the case



Fig. 9. Comparison between AWE and eigenfunction expansion method
for dimensionless temperature across the layers at different dimensionless
time.

Fig. 8. Dimensionless temperature distribution along the top edge of slab
at ZT = 0.0001 after applying partial Padé approximation.
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ZT = 0.0001. In this stability scheme, the set of poles at an
arbitrarily chosen node is used to approximate the
responses of other nodes. In other words, this means that
only the set of poles at an arbitrarily chosen node is calcu-
lated and it is used throughout the calculations of ZSR and
ZIR for all other nodes. Usually, the node selected to
approximate other nodes has high frequency response,
and definitely it has to be stable. Therefore, it will eliminate
the need to monitor the stability at every node.

In this case, the node closest to the temperature load is
chosen to approximate the temperature rise for other nodes
along the top edge of slab, and only the poles at this chosen
node are calculated. This node is chosen because it has the
fastest temperature rise, or in other words, the response at
this node is of high frequency. The temperature responses
for nodes along the top edge of the slab are plotted on
Fig. 8. There is no unreasonable solution as compared to
the former stability scheme because the poles used are
selected from a chosen node, which is stable and also rep-
resenting the correct response. This eliminates the genera-
tion of incorrect poles at some nodes (when using former
stability scheme), which may renders the solutions to be
incorrect. One way to determine a suitable node is to check
the responses by using former stability scheme before
applying partial Padé approximation. The accuracy of this
scheme will be discussed in Section 5.2.
5. Performance of AWE with stability schemes

5.1. Fourier heat conduction

Analytical solution is always more preferred because it
provides an algebraic relationship equation that will gener-
ate solutions instantaneously, just by inputting the related
parameter values. However, analytical method may not be
viable for problems involving complex geometry and in
most cases, it will also involve complicated mathematical
derivations to arrive at the solution. One example is the
eigenfunction expansion method, which has been used to
solve the transient heat conduction for a one-dimensional
three layers composite slab [19]. This method involves com-
plicated mathematical derivations and also requires New-
ton iterative procedure to solve a non-linear equation for
obtaining the eigenvalues. When more parameters (more
layers) are involved, the eigenvalues become more difficult
to obtain as the nonlinear equation becomes more compli-
cated to be solved.

In comparison, finite element method (FEM) coupled
with AWE as solver can provide accurate solution in a
more efficient manner. FEM can be easily implemented
to solve one-dimensional thermal problem, and also can
be extended to solve two-dimensional or three-dimensional
problems. AWE is also capable of providing the solution in
equation form for each node. Besides that, moments in
AWE are generated through direct solving of a system of
linear equations. This will not be an issue even if the num-
ber of equations involved is large.

Fig. 9 compares the eigenfunction expansion solution
with AWE solution for the one-dimensional three layers
composite slab. It shows that AWE solutions are identical
to the analytical solutions. In addition, this one-dimen-
sional three layers composite slab is also extended into a
three-dimensional problem with cross-sectional area of
one and solved using AWE. Fig. 9 shows that there is slight
difference between one-dimensional solution and three-
dimensional solution (nodal temperatures taken across
the centers of layers) because in-plane heat conduction
effect is not considered in formulation for one-dimensional
heat conduction.

5.2. Non-Fourier heat conduction

In Section 4.3, it is shown that both stability schemes are
capable to suppress the generation of unstable poles for
case ZT = 0.0001. However, only partial Padé approxima-
tion can yield reasonable responses for all the nodes by
using only one set of poles from a stable and reasonable



Fig. 10. Comparison between AWE (after applying partial Padé approx-
imation) and Runge–Kutta for case ZT = 0.0001.

Fig. 11. Comparison between AWE (after applying stability schemes) and
Runge–Kutta for case ZT = 0.05.
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chosen node. In order to check the accuracy, it is compared
with Runge–Kutta solutions at node 6, 16, 26 and 46 along
the slab. Positions of these nodes on the slab are shown in
Fig. 4.

Runge–Kutta fourth order method has been used by
Cheah et al. [13] to obtain his results. Fig. 10 shows that
AWE solutions differ from the Runge–Kutta solutions at
the initial time and only agree well approximately after
0.2 dimensionless time. This is expected because the con-
cept of AWE is to extract the dominant poles from the full
system [18] and these dominant poles are usually of low fre-
quency. Thus, AWE responses are not able to match the
high frequency temperature responses at the initial time
for case ZT = 0.0001. In other words, initial steep response
cannot be approximated by AWE using exponential terms,
as shown in Eq. (21).

In addition, Fig. 10 also shows that AWE is not able to
approximate the delay accurately since the response only
consists of real and complex conjugate exponentials. This
is because, to represent a pure delay, AWE is employing
decaying sinusoids to artificially force the response close
to zero for some initial period. This will lead to spurious
ringing effects in the AWE waveforms [18] as shown in
Fig. 10.

For case ZT = 0.05 and ZT = 0.5, the AWE solutions
can be successfully stabilized with both stability schemes,
which are neglecting unstable real positive poles and partial
Padé approximation. For accuracy check, AWE solutions
after applying these stability schemes are compared with
Runge–Kutta solutions. For case ZT = 0.05, the compari-
son is shown on Fig. 11, where the results from using both
stability schemes agree well with Runge–Kutta solutions,
respectively. AWE shows similar accuracy for case
ZT = 0.5 as well, but the results are not depicted in this
paper.

In term of computational time, AWE only needs 1.2 s
for case ZT = 0.0001 while Runge–Kutta requires 31 min
even though the same total number of nodes is used. For
case ZT = 0.05, AWE can produce the result in less than
1.5 s using both stability schemes while Runge–Kutta
requires 1.8 hours. In this case, Runge–Kutta requires
approximately 3.5 times more than for case ZT = 0.0001
because smaller time step is required to attain convergence.
However, AWE can still produce the solutions at approxi-
mately the same amount of computational time for both
cases. This is because AWE is independent of time step size
used. Thus, AWE is much more efficient than Runge–
Kutta in terms of speed but still it can produce accurate
results equivalent to Runge–Kutta.

6. Conclusion

AWE has proven itself to be a powerful solver for fast
transient thermal characterization of Fourier and non-
Fourier heat conduction. When AWE is coupled with
FEM, it is capable of solving one-dimensional, two-dimen-
sional and even three-dimensional heat conduction prob-
lems. AWE is also at least three orders faster in terms of
computational time as compared to conventional iterative
solvers, but still providing equivalent accuracy. The draw-
back of AWE is its inherent instability of Padé approxima-
tion, which may yield unstable solutions even for stable
system. However, this instability can be overcome by
applying any of the two stability schemes that has been
introduced in this paper. Besides that, AWE does have
the limitation of approximating very high frequency
response for non-Fourier heat conduction case with ZT

= 0.0001. This limitation is indicated by incorrect
responses even after neglecting the unstable positive poles,
and thus AWE is not recommended for use. Even though
applying partial Padé approximation may help to yield rea-
sonable responses, but the initial high frequency response
still cannot be approximated accurately.
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